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Abstract

The dynamic properties of semiconductor laser diodes are signiﬁcantly affected by
external optical feedback. In this paper we present theoretical and simulated dynamics for a laser
diode with a short external cavity. We assume that only the emitted photons are fedback only
once by the external cavity. In the unstable regime of short external cavity laser diode operation
high frequency oscillations (>20 GHz) exist as a result of self twin-mode locking. This instability
corresponds to equalization of the cavity loss for the main mode (the lasing frequency) and
sidemode. We will show the critical feedback parameters and the frequencies of self twin-mode
locking oscillations in these regimes -of high frequency microwave oscillations. As will be
shown, both the Fabry-Perot and vertical cavity surface emitting lasers exhibit such microwave
oscillations. The frequency-modulated microwave oscillation will be useful for all-optical high-

speed transmitters.




1.0 Introduction

Semiconductor laser diodes exposed to optical feedback have been found to improve laser
frequency stability and to narrow laser linewidth. Optical feedback, however, can also
significantly change LD (laser diode) dynamics.

It also has been theoretically and experimentally demonstrated that the effects optical
feedback vary with the external cavity length and with power feedback ratio. For long ( ~lcm
and more) external cavity LD, these changes lead to chaotic self-modulation of laser light with
dramatic increase in laser spectrum width and noise, instead of line narrowing (“ coherence-
collapse “ effect [17). It occurs as a result of sustained relaxation oscillations of laser output,
when feedback coefficient exceeds some very low critical value about -40 dB and extends over
several decades. This “coherence-collapse” regime was shown to be the result of a combined
effect of the LD relaxation resonance and EC resonances [2] . For the short external cavity LD
(SEC LD), the EC mode spacing is much larger than the LD relaxation frequency [4]. The larger
mode spacing lend to avoid coherence-collapse.

In the unstable regime, a SEC LD exhibits high-frequency instability associated with
locking of compound cavity modes for relative high values of coupling coefficients. This effect
enables to achieve frequencies of optical current-controlled oscillators in excess of 20 GHz.

We can use SEC LD to generate tunable microwave oscillators with frequency
modulation capacities. The frequency can be modulated by several ways. From our simulation
result, we can modulate the frequency by changing optical feedback and the external cavity
length.

In the following, we focus first on the theory of SEC LD including rate equation, steady
state analysis and linear stability analysis. We introduce the Lang and Kobayashi rate equations
for the SEC LD [3]. The steady state analysis shows that for each state of lasing the “steady-
state” condition of instability occurs when the cavity losses for the main and side mode are equal
[4]. Also, the linear stability analysis can predict the dynamic instability of laser operation caused
by the twin-mode competition.

Furthermore, we use computer simulation to prove the instability. First, Fabry-Perot laser
diodes with 200 um cavity length is used for computer simulation. Second, we use vertical-cavity
surface emitting lasers (VCSEL) with 1 um cavity length for simulation. The structure of
VCSEL is shown in Fig. 1 [5].

Compared with long cavity length, the advantage of the VCSEL is, due to its short cavity

length, the longitudinal cavity mode spacing (being equal to c/2d , d is the cavity length) is very
large. In fact, it is possible to have a mode spacing larger than the gain bandwidth of the active
material. Thus, it can be inherently single longitudinal mode.




Finally, our results are summerized.
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Fig.1 Schematic cross-section view of VCSEL structure considered here.
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2.0 Theory

2.1 Rate Equation

Laser Diode External Cavity

R1 ' R2 R3

L Lext

Fig. 2 Schematic of a laser diode with an
external cavity

The schematic of a semiconductor laser diode with an external cavity is shown in Fig.2 .
R1 and R2 are the reflectivity of the laser facets and R3 is the reflectivity of the external mirror.
L and Lext are the lengths of the laser diode cavity and the EC; fext is the feedback. We will
consider T, <<l , wherer=2L,, /c is the photon round-trip time in EC and ®, is the
angular frequency of the relaxation oscillation .

Here we use Lang and Kobayashi rate equations for the SEC LD. There are several
assumptions for these rate equations. First, the solitary laser is assumed to be single mode, which
implies 7>> 7, (7, =2Ln, /c , is the photon round-trip time in the LD-cavity. n, is the group
refraction index of the LD.) ; second, f,, <<1 which means only one round-trip of the emitted
photons is significant inside the EC. Then we arrive at the following two rate equations :

D) _ 1o 0.2 _ .1 _ _

& —][Qs Q+ 5 gy (N Ns):|E(t)+2(g rp)E(t)+KE(t 7)exp(—iQ7) )
dN N

@l | @
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where g =g(N)(1-«,P) is the nonlinear gain where the linear gain is given
by g(N) =g, (N —N,); P is the output power.

Q, is the resonance optical frequency of the LD without EC.

« is the linewidth enhancement factor; g, is the differential gain.




7, is the photon lifetime in the LD cavity.
7,, is the carrier lifetime due to spontaneous and nonradiative recombination.

S =|E(t)|" is the photon number in the LD cavity. (output power P~S)
J is the carrier injection rate.

The feedback parameter is given by

where parameter C; which is a function of the facet and external mirror reflectivity R, and R,

R
G =(1—R2)1/7§

is a measure of the coupling strength between the two cavities.

The relation between output power (P) and photon number (S) is discussed more in detail
in the appendix A [6].

2.2 Steady-state analysis

Stationary lasing conditions can be obtained from (1), by setting E to be constant. The
real and the imaginary parts of the equation ,when they are separated, can be written as

g—% = -2KkcosQ2T 3)
p

QS—Q+%Ag—-KsinQT=O . | )
In the absence of feedback, the threshold gain g, is determined by

1

&n =" " ' (5)
TP

Inserting (5) into (3) leads to a threshold gain shift
Ag(Q)=g-g, =-2xKkcosQr. (6)

To find possible frequencies of lasing Q, , insert (6) into (4) ; that gives



Q'S -Q = kacosQr+ ksinQr (N
or
(Q, - Q) 7= xr(acosQr+5inQ7) = Krmsin(Qr+ 6)
(Q, - Q) r=Csin(Qr+ 6), ®)
where
@= arctan )

and the feedback coefficient C is given by

C=xml+a? . (10)

The number of external-cavity modes is determined by the parameter C. For C<I only
one mode exists, while for C>1 there exists two or possibly more modes. For C>>1 the total
number of modes is approximately given by C/(z+1) (Fig.3 shows the solutions when
increasing x7). Furthermore for C>1, only half of the solutions, corresponding to dQ2/dQ2; >0
are stable with respect to slow fluctuations, representing, thus , possible frequency of stationary
lasing. Q, denotes the possible frequency of lasing. Inserting Q, into €2 of equation (6) and (8),
gives:

Fig. 3 The graphical representation of equation (11) for @=4. dashdot line for x7=0.5,
solid line for x7=4 and dash line for x7=16 . intersection between the three lines
and sinusoidal function is theoptical frequencyof the LD without EC.




Q -Q

—°—K——i = —y/1+ o’ sin(Q, r+ arctan @) (11)

A

s _ —cos2,7 . (12)
2K

The graphical representation of equation (11) is shown in Fig. 3. The solutions to
equation (11) are the intersections between the line and the sinusoidal function {7]. Also when
x7<1 only one solution exists (the intersection between the dashdot line and the solution of the
LHS of equation (11)) , increasing sz becomes more solutions ( shown by the intersections
between the other lines and the sinusoidal function) .

2.3 Compound-Cavity modes

Each lasing frequency €, has its own system of compound-cavity modes Q,. The
lasing frequency Q, and the compound cavity modes Q, should have the same

normalized cavity loss shift .

7Y SO B IS S HI [

normalized optical frequency shift

Fig.4 normalized cavity loss shift versus normalized optical frequency shift. the ellipse
correspond to possible lasing frequency. The circle shows CC modes when the lasing
frequency is equal to the optical frequency of the LD without EC.

Ag,,( threshold gain shift due to feedback ). That gives

Ag,(R,) = Ag, () =-2KkcosQ, 7. (13)



By inserting (13) and Q, into (7), we obtain
. a
Q. -Q, =ksinQ, 7- EAg(QO) . (14)

These compound-cavity modes Q, can be found by (14) times 7 and subtracting the result from
(11) times x7 , which yields

©-Q) _ sinQ, 7—sin g, . (15)
K

The graphical representation of (15) is shown in Fig . 5. The solutions to (15) are the
intersections between the line and the sinusoidal function. As we can see in Fig. 5, increasing «7
cause more and more solutions between the LHS and RHS of equation (15).

Let us consider the evolution of the CC modes with increasing «t in the plane of
parameters normalized optical frequency shift (€, - )/« -- normalized cavity loss shift’
Ag,., | 2% = —cosQ, 7. In this plane, see Fig. 4 , all solutions of (8) belong to an ellipse [8]. For
xr>>1 only those solutions of (11) that lie on the lower branch of the ellipse are unstable
corresponding to dQQ, / dQ, <0 [2].

The solutions of (15) lie on a circle with radius 1 in the.same coordinates as Fig. 4.
Equation (8) AQr=Qr-Q,r=-Csin(Qr+arctane) and a small-signal analysis yield the
result for the linewidth of narrowing by external feedback [12]:

Av=Av,[1+ Ccos(Qr+arctan B

(16)
where Av, denotes the linewidth of the solitary laser diode.
The lowest spectral linewidth is obtained for ¢,, = Q7= ~arctan a, yielding

Av, Av,

Av= = . (17)
(1+C) 1+ xel+a*)
The mode with the lowest threshold gain to start lasing is Ag, = —-2xcosQr= -2k

when cos Q=1 and thus

Av,

=—— fi
Y (1+ x7)° or ¢

=2mm , m=012,----- . (18)

ext

10




* Fig.5 The graphical representation of equation (15). Dash-dotted line for x7=0.5, solid
line for xk7=4 and dash line for x7=16.

One would more expect that the mode with the lowest threshold gain would be the lasing
one. Surprisingly, it turns out that the measured spectral linewidth for laser diode with optical
feedback coefficients C>>1 is closer to equation (16) than to (18), indicating that the external
cavity mode with the narrowest linewidth is more stable than the external cavity mode with the
lowest threshold gain.

From the measured conclusion, we assume ,7=—arctana corresponds to laser
oscillation with minimal linewidth. In Fig. 4 the circle is shown for the case of Q, =Q . It
means that the lasing frequency Q, is equal to the resonance optical frequency Q of the LD
without EC. The intersections between the ellipse and the circle are four points. One of the points

marked A in Fig. 4 is when Q, = Q, and its coordinates are [(QO -Q))/k,~ cos¢0]. Another
point B has coordinates , [(Q1 -Q,)/ k,~cos ¢0] where

Q =Q,+2«sing, . (19)

v The points A and B have the same optical loss Ag,,, = -2xcosQ 7 as the lasing mode
Q, , they can be oscillating modes at the same time.

For xr< 1 (weak feedback), Q, = Q, is the only solution to equation (15). And it cannot
be the lasing one because the optical loss is higher than the lasing one (point A). Increasing x, it
leads to equalization of the cavity losses for the main mode ( point A) and the sidemode when
the last one reaches point B. Point B (the sidemode) has the same optical loss as point A (the
main mode) and could be the lasing one too. However point B is lying on the upper unstable

11




branch of the ellipse, so it cannot be the lasing one for the solitary LD without EC. For the LD
with EC, reaching point B by the CC sidemode can be considered as the transition from stable
-CW operation at frequency Q, to instability. The critical value of &7 to reach point B can be
found by the following steps. From the x-axis of Fig. 4 at point B,
cosQ), 7=cosg, =cosQY,7 . (20)

Q, also meets one of the solutions of equation (15). By inserting €, into Q, of equation (15),
we get ‘ : '

(Qy = Q)7 = kr(sinQ, 7 — sing,) 21
Inserting equation (19) Q, =Q, +2«sing, into Q, onthe LHS of equation (21) yield

sinQ,zQ—sin 4y - | 22)
From equations (21) and (22), we have

Qr=Q,7-27-24, . (23)

After multiplying equation (18) by 7 and subtracting (22) into it, one obtains the “steady-state”
condition of instability of the form

KT= __”_";?9_ . : (0L}
—sing, :
Equation (24) also satisfies equation (11).

Equation (24) defines the critical value of feedback under two conditions:
¢, =—arctan and Q, =Q_ . We could associate each state of lasing with its own number N.

The point A, one of lasing state nearest Q_ is set to be N=0. We denote Q,", the lasing

frequency for the Nth state, and ¢0N, the detuning parameter for the Nth state. Then we can find
the next relation for the phase shift

QN =Qr-2aN- ¢, +¢," N =0,+1,£2,----.. : (25)
¢ is the detuning parameter between (-7, 7) ,and Q,7=2mn+ ¢, .

Combining (24) and (25) in (7), we obtain

12




v__ az+g’)
B = N D4, (20

This is the equation for the critical value of phase detuning .

To find the critical feedback coefficient value to reach the “steady-state” condition (24) of
instability for each state of lasing, we combine

r= 1\;;.1.\/7;

Ty

for Fabry-Perot laser and (23). That gives

1-R = N T+,
KT=—F="—" ,
JR 1, Jer —sing,”
then,
N R (”+¢0N)2 Ty i
fexl :(1—R)2 ) sin2¢ N 7 . 27
0

The relation between main mode and sidemode (CC mode) of the Nth lasing state can be
. found by using equation (23) , _
Q" =0, r-272-24,",

ie.,
N
QY =q," —2n(1+i”°— 1
/4 T
Then, ,
Q" =0, -22v, (28)
where ‘
N
vN=(1+¢° )-l (29)
T T

can be interpreted as the beating frequency between two CC modes having equal optical loss.
In equation (24) xt should be greater than zero, so ¢, has values between (-7m,0).
That is, the detuning parameter is negative. This condition translates to

4"

v/

1+ <1

which gives

13



v, <1, (30)
T

from equation (29). So the mode beating frequency is always less than EC-mbde spacing 1/ 7.

The steady-state analysis of the short EC LD will help us to find the critical value of the
feedback parameter leading to possible instabilities in laser operation. Now, we will prove the
instability of laser operation by using the dynamic analysis including the linear stability analysis
and computer simulation.

2.4 Linear Stability analysis

The static solution is called stable, if small perturbations from the static solution decay to
zero as time goes. toward infinity. Such a stable static solution can be observed experimentally.
To check the stability of the static solution, we perform the linear stability analysis for a given
static solution. Let 6F,5¢ ,and 6N denote the deviation from the stationary solution . The
criterion for stable operation is that the determinant D(s) has no zeros in the right half of the S-
plane {71, [9]. The determinant is obtained as

D(s)=—s'+5*[y+2xe(1)cosd]

—s[a)R2 +K262(T)+2}/eKe(T)COS¢] €)Y

+K[coR2e(r)(cos ¢— asing) + y,xe’ (1) + ay,y ,e(7)sin ¢]
with e(7) =1-¢" and ¢=Qr. Here y, =1/, +g,S is the carrier perturbation decay rate,
y=7.+v, isthe decay rate of relaxation oscillations, with y, = gi, P being the contribution

of the nonlinear gain. The angular frequency of relaxation oscillations @, 1is given by
w, =gg,S+ Y.7 - Assuming that '

W >>7,7, » @F >>K,
then D(S) can be approximated by

D(s)=-5"+5"[y +2xe(7)cos @]
—s[a)Rz +Kzez(r)] | ' (32)

+K[a)R2e( 7)(cos §— asin ¢)]

14




For s = jw, we can separate the equation (32) into the real and imaginary parts. The real part of
the equation is related to the damping constant of the semiconductor laser rate equations, and the
imaginary part is related to the small signal resonance frequency.

The real and the imaginary parts give the following two conditions for having stable
solutions located in the left half of the complex S plane (The detail is shown in Appendix B) :

2 2 1

(1-2 wz)cosgbo — asin g, <2~ sin w7+ —— (33)
Wy Wy ko, 1-coswr
o’ —a)R =4x* sin ( )+a)}/cot(—) (34)

where 0, = ® R'2 /v is the damping frequency of the relaxation oscillations of LD without EC,
P, = [QO ‘r] mod(2 ) is the optical phase shift in EC, or detuning parameter.

If we neglect the first term on the right hand side (RHS) of the equations (33) and (34),

the remaining terms 1/ d2 and y describe the relaxation oscillation - induced instability which
causes coherence collapse for long EC LD and very weak feedback. The first terms in the RHS

of equation (33) and (34), which are proportional to x* and x, respectively, are thus of
important in the case of sufficiently high levels of feedback and reflect the influence of the
above-described CC-mode competition on stability of the short EC LD.

In the case of sufficiently high levels of feedback, we neglect the second term on the RHS

of both (33) and (34) and assume 2@* / coR2 >> 1, . We then obtain from (33) and (34) ,

cos@, = X sinwr (35)
@

w= 2;<sin(—“-2’f) (36)

When the frequency of self-oscillations w/2 7 is equal to the CC-mode beat frequency from
equation (19), we get

N
2y o+t 37)
27 T T
which yields
wr=27+2¢," (38)

By inserting (38) into (35) or (36) ,we can get the same expressions as (14) :

15



T+ @,
—sing,

KT=

Thus, the linear stability analysis of the short EC LD not only gives the critical value of x but
also predicts the dynamic instability of laser operation caused by the competition of the two CC
modes which have equal optical losses.

Equations (31) and (32) give the boundary of this stability region. But they cannot give
any information above the stability boundary. To get the information above the boundary of the
stability region, we proceed to use coraputer simulations of the nonlinear system.

3.0 Numerical Simulation

The rate equations for the EC LD are given in equations (1) and (2). The absolute squared
value of the electric field amplitude corresponds to the number of photons in the laser cavity.
Equations (1) and (2) can be cast into rate equations for the photon number S, the phase ¢ , and
the carrier number N.

ds(r) _

o (g- %)S(t) +2K\/S(f) JS(t —7)cos(Q, 7+ ¢(t)l—— g(t—1) (39

det) _ 2o (N=N)- K————“S(t_r)sin(QsT+ #(t) - ¢t — 7))

dt 2 JS() ' (40)
d]\;gt)=J—N(t)—gS(t) | (41)

P

In numerical simulations, the system of rate equations system (39)-(40) is solved by using
a fifth-order Runge-Kutta method [10],[11]. The calculations used the laser parameters given in
Table I .The computer program is written in C (shown in Appendix C). We specify the initial
conditions S(0)=10, #(0)=0 and N(0)=0. In the time interval 0<¢ < 7, the data of photon
number S and phase ¢ are stored in memory and they are reused after the round-trip time ¢ of
the EC in order to account for the optical feedback.

Next, we will show results for the two different kinds of SEC LD: A) Fabry-Perot laser
with an external cavity; B) VCSEL with an external cavity

3.1 Fabry-Perot Laser with an external cavity

The first example is a Fabry-Perot laser with an external cavity as shown in Fig.2, with
cavity length L=200um, facet reflectivity R=0.32 ( corresponding to KL=2.3 for an AR-coated
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DFB laser with a z/2 phase shift.), output power P=SmW/per facet. Other parameters are given
in Table I [12]. We choose EC cavity length such that round-trip time r varies between 25 and
40 ps (the external cavity between 3.75 and 6 mm). Within this range, 7 is less than the critical
value for coherence-collapse regime (chaotic self-modulation of laser light with dramatic
broadening of laser spectrum).
TABLE 1
List of Parameters for Fabry-Perot laser

Parameter Symbol Value Units
scattering loss in the active region a, 3.6x10° m!
carrier number at transparency N, 2.0 x 10°
output power P 2.906x10% xS | mW/ facet

index of active region
differential gain 2.2%x10° 57!
linewidth enhancement factor 4

n, 4.5
En
a

laser wavelength A 1.3 um
TS
TP
kl’

spontaneous emission lifetime 2.0x107° s
photon lifetime 1.29072 x 107" s

4.8 w

gain saturation coefficient

Figs. 6 and 7 illustrate two characteristics of SEC LD instability. In Fig. 6 we report the
simulated and analytical dependence of the oscillation according to the feedback parameter ( £, )
on the length of external cavity (Lext). The dependence of the frequency of these oscillations on
the length of external cavity (Lext) is shown in Fig. 7 . The two dash lines in Fig. 6 and Fig. 7
represent two groups of strongest high-frequency oscillations (the modulation depth reaches
unity) according to numerical simulation. Data marked with asterisks are the simulation data of
high frequency oscillations. The lower dash line belongs to the first group of high frequency
oscillation according to f,,° .The second dash line belongs to the second group of high
frequency oscillation according to f,' .

As discussed the results in Fig. 6 and Fig. 7 are obtained under two assumptions. First,
¢,, = —arctan &, the lowest spectral linewidth, is more stable than the lowest threshold gain as
mentioned before. Second, Q, =Q, means the lasing frequency €, is equal to Q, , the
resonance optical frequency of the LD without EC . We can see from the high feedback
parameter ( f,,) that the laser operation will lose stability and lead to high frequency
oscillation.

This type of instability is the result of the beat frequency between two CC modes having
equal optical loss. As mentioned in the previous section, by increasing f,, it leads to
equalization of the cavity losses for the main mode and the first left sidemode and those two
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modes produces a self twin-mode locking generating high frequency oscillations. In. Fig 6 the
two solid lines present the critical feedback parameters from equation (27) (the lower solid line

shows N=0 for f, " and the other shows N=1), corresponding to the main mode and the
sidemode having equal optical loss. The two solid lines as shown in Fig.7 illustrate the results
from equation (29) (the lower solid line shows N=0 for v, and the other shows N=1). These
results denote the beat frequencies between two CC modes having equal optical loss. From Fig. 6
and Fig. 7 linear stability analysis and computer simulated agree very well.

0.3 T = T T T
: e S :
N , :
H \\.\\:i\ Ny ' E
: — : :
0.25------- [ifutuiieinieiiefehieled S Sttt Sttt it it -1
: : D! :
- : :
i ™ :
i \ T ay H
(0T L e e e R B e L L -
: ' ' ' LTI
) "~.\ . "
— —
T
50,15 fann--- N Ut S -
o —~— ' : v

5 NN SR USSR S — =

Lext (mm)

Fig. 6 A SEC LD operation (Lext,fext). The lower and upper solid lines present
theoretical critical value at fm0 and fex,l group . The lower and upper dash lines show

the strongest oscillation at fex,0 and fm1 group. Curved marked with ‘*’ represent the
simulation data..

In what follows, we explain the data within the onset and offset of high frequency

oscillations of the group f,,' for an air-equivalent EC length Lext=5.25mm (z=35 ps). For £,
=0.204 the high frequency oscillation occurs at a frequency around 20.9 GHz. But the oscillation
is not strong, the amplitude of the oscillation will become weaker and it will disappear after
t>52ns. Increasing f,,, to 0.205 the stable oscillation occurs. But the amplitude of the oscillation
is small. That means the intensity of the sidemode is much less than the main mode. Further
increase in f,, leads larger oscillation amplitude (the stronger intensity of the sidemode) and the
bigger oscillation frequency. When f,,, reaches 0.206 the strongest intensity shows up as shown
in Fig. 8 with the frequency f=21.3 GHz. Further increase in f,, (>0.206) destroys the twin-
mode locking. It leads the high frequency oscillation to a new single-mode state with higher
output power (6.56 mW). The new optical frequency does not the same with any of the “old” CC
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modes in Fig. 8 . The new one is one of the stable solutions (which lie on the lower branch of
Fig. 4) of equation (8).

33 ! e :

freq (GHz)

Lext (mm)

Fig. 7 A SEC LD operation (Lext,f). The lower and upper solid lines present the

theoretical critical value at fex,0 and fex,1 group . The lower and upper dash lines

show the beat frequencies of the fm0 and fex,I according to the strongest oscillation
in Fig. 11. Curved marked with ‘*’ represent the simulation data.

From the theoretical and simulated results, we conclude that: for the high feedback
parameter f,,, increasing f,, causes the single-mode optical frequency to become unstable
above a critical f,, . It leads to high-frequency oscillation corresponding to self twin-mode

locking. Increasing f,,, destroys mode locking. If feedback f,, is further increased, above
process will repeat.

Thus, we can see that a SEC LD exhibits several regimes of self twin-mode locking high
frequency oscillations in some ranges of feedback parameters.

The simulation we have done corresponds to an output power P=Smw/per facet. It agree

with the results in [4]. The critical feedback parameters required for high frequency oscillation
also change with the change of the injection number according to the simulated results.
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74.0 75.0 time (ns)

Fig. 8 The strongest oscillation for the Lext=5.25mm and the fm] group. The
feedback parameter is 0.206. The oscillation frequency is equal to 21.3 GHz.

In what follows, we set the output power P=2 mW/per facet. Other parameters are the
same as the previous example as shown in Table I. Here, we also choose the EC length
L,, =525 mm. We found that the feedback parameters for the strongest modulation index
occurs when f,,= 0.188 compared to 0.206 for P=5 mW/per facet. Further increasing £,
destroys the twin mode locking. It leads the laser operation on a new single-mode state with

higher output power (3.06 mW). The strongest oscillation frequency we get in the group fwl is
20.7 GHz. This frequency is not the same with the frequency 21.3 GHz in the previous example
of P=5 mW/per facet.
Table II
List of frequency, average power and oscillation amplitude
on the change of the injection current

Injection current (mA) frequency (GHz) | Average Power (mW) | Osc. Amp. (mW)
47.87 0 6.279 0
48.23 21.3 4.925 4775
48.39 21.2 4.95 4.95
48.55 21.1 . 5.06 4.89
48.71 21.05 5.05 4.55
48.84 21.03 5.12 4.0
48.85 21.02 5.123 3.925

48.865 21.01 5.125 3.825
48.87 21 5.163 0.123
49.03 20.9 5.228 0.007
49.19 20.7 5.2875 0.0005
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Next, we will show the dependence of the oscillation frequency (f), average power (P)
and oscillation amplitude on the injection current (I=J/e). The external cavity length is fixed at
Lext=5.25 mm and the feedback parameter is fixed at f,,=0.206. The other parameters are
shown in Table I. In Table II and Fig. 9 (a),(b),(c) , we can see the lead to higher oscillation
frequency variations of these quantities for injection current values between 48.2 mA and 49.2
mA. The laser operation of f,,=0.206 and injection current I=47.87 mA destroys the twin-mode
locking and leads to a new single-mode state with higher output power 6.279 mW. For
[>48.23mA the high frequency oscillation occurs. The strongest oscillation shows up when
[=48.39 mA at a frequency 21.2 GHz . Further increasing injection current I leads the weaker
oscillation. When I>49.19mA, the stable oscillation disappears. Thus, the injection current are
functions of the oscillation frequency, the oscillation amplitude and the average output power
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Oscillation Amplitude (mW)

injection current | (mA})

(©

Fig. 9 The parameters of the laser operation depend on the injection current (I) at an
external cavity length Lext=5.25 mm and the feedback parameter f,,,=0.206 . Data
asterisks are the simulation data.(a) Oscillation frequency versus the injection current (I).

(b) Average output power versus the injection current (I).

(c) Oscillation Amplitude

versus the injection current ().

According to the simulated results, the SEC LD operation do exist some instability
regimes. The feedback parameters of the onset and offset of the instability depends on the output
power. The oscillation frequencies also depends on the output power. But the theoretical critical
feedback value in equation (27) cannot show any information about the relation between f,,, and
Power. The theoretial frequency value in equation (28) also cannot give any information about

the relation between frequency and Power. Those should be investigated in more detail.

An interesting question is: what is the highest oscillation frequency? By inserting
k= C, | 7, into equation (24) and equation (24) 7+ ¢, = —kzsin g, into equation (29), we get

v=[-sing, ]

where

is a coupling strength coefficient between the EC and the LD. From equation (42) , we can see

G 1
T

(42)
7, :

C =(1-R2)-\/§=(1—R2). f%
2 ) 5

that higher f,, and shorter LD (means shorter 7,) lead to higher oscillation frequency.

To obtain the highest oscillation frequency, we also need to set —sing, =1 in equation

(42). Then we get
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assuming 77=1. Thus, the highest frequency is equal to the mode spacing, v=1/17,=c/2Ln,,
for the LD without the EC.

Whether this high frequency limit can really be achieved and where the stability of the
high frequency regimes really are still need to be investigated in more detail.

3.2 VCSEL with an External Cavity

VCSEL External Cavity
R1 R2
P
fextP
o J
T 1

The system is schematically reprgécuted in Fig.10, w%g(é R1=0.999 (for the top mirror),

R2=0.995 (for the b Schematic of a VCSEL cavity with an external cavity im. The other

parameters used in tne 1010WILE SUNWALON A€ SHOWIL L 1d0IE L1 .

According to our simulation, the result of simulation agrees with analysis only when the
average output power of VCSEL is around 15.7 mW *. This power is too high for the VCSEL
opearion. Hence we will show the simulated results corresponding to the output power
P=)mW/the bottom facet. In Fig.11, we show the locations of strongest high frequency
oscillations in the parameter space consisting of the feedback parameter ( f,, ).and the length of
external cavity (Lext). The graphical representation of the high frequency oscillations (f) as a
function of the length of the external cavity (Lext) is shown in Fig.12. As before, the dash lines
are fits to simulated results marked with asterisks.

TABLE II1
List of Parameters for VCSEL

Parameter Symbol Value Units
scattering loss in the active region a, 3.6x10° m™!
carrier number at transparency N, 1.41372 x10°
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output power p 7.653%1078 x § | mW/the bottom
‘ facet
index of active region n, 3.5
diameter of VCSEL’s r 15 um
differential gain 2y 2.2%x10° 57!
linewidth enhancement factor a 4
laser wavelength A 966 nm
spontaneous emission lifetime T, 2.0x10°
photon lifetime T, 1.766 x 10712
gain saturation coefficient k, 4.8 W
0.2 ! i 1 ! !
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Lext {mm)

Fig. 11 A VCSEL with a SEC operation (Lext ,fext). The lower and upper solid lines
show the critical value at f,,° and f,,' group. The lower and upper dash lines show

the strongest oscillation at and fm1 group Curved marked with ‘*’ represnet the
simulated data. The parameters for the strongest oscillation at an average output power
around 15.7mW ,coincide with the critical parameters for the onset of oscillation

according to analysis. The range of parameters for oscillations is relatively small.

As we can see, shorter laser cavity length as for the case of a VCSEL also lend to twin-
mode locking and high frequency oscillations. The lower dash line in Fig.11 and Fig.12 show the

strongest oscillation just before switching to a new single-mode state for £..." and the upper
ones for f,,' . Increasing f,, causes the instability to switch to a new single-mode state. This
process repeats if £, continues to increase (for " ,N=0,1,2,3 .....) .
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Next, we will explain the instability regime of VCSEL operation for an external cavity
length Lext=3.75 mm (the instability group for j;x,o only). The onset of instability is
f.,=0.07 with the weak intensity of sidemode. Increasing f,, results in stronger intensity of
sidemode thus stronger oscillation. When f,, reaches 0.071 as show in Fig.13 the modulation
depth reaches unity (the strongest oscillation) with a frequency of 18ghz. Increasing f,,, further
destroys the twin-mode locking instability and lead to a higher power (~4.496mW) in a single-
mode state. These changing in the strength of the oscillation repeat for £ N=0,1,2,3 ..... .
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Fig. 12 A VCSEL with a SEC operation (Lext ,f). The lower and upper solid lines show
the critical beat frequencies of the fw‘,0 and fml group. The lower and upper dash

lines show the beat frequencies of the and fex,1 group according to the strongest
oscillation in Fig.11. Curved marked with ‘** represent the simulated data.

Fig. 13 The strongest oscillation in Lext=3.75mm and the fex,0 group. The feedback
parameter is 0.071. The oscillation frequency is 18 GHz.
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Next, we will show the dependences of the oscillation frequency (f), average power (P)
and oscillation amplitude on the injection current (I=J/e). The external cavity length is fixed at
Lext=3.75mm and the feedback parameter is fixed at f,,=0.071. The other parameters are
shown in Table III. In Table IV and Fig.14 (a),(b),(c) , we can see the variations of these
quantities for injection current values between 138.8mA and 193.8mA. The laser operation for
£..,=0.071 and injection current I=138.83mA detroys the twin-mode locking and leads to a new
single-mode state with higher output power 4.329mW. For 1>138.99mA the high frequency

oscillation occurs. The strongest oscillation shows up when I=139.07mA at a frequency 18
GHz. Further increasing

Table IV

List of frequency, average power and oscillation amplitude on the change of the injection current.

Injection current | frequency | Average Power | Oscillation
(mA) (GHz) (mW) Amplitude
(mW)
138.83 0 4.329 0
138.99 18.1 2.0 1.80
139.07 18.0 2.025 1.825
139.15 18.0 2.045 1.7
- 139.23 18.0 - 2.085 1.55
139.31 18.0 2.125 0.105
139.47 17.9 2.199 0.016
139.63 17.8 2.276 0.001
19 T e ; ; ! s : ! s
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Fig.14 The parameters of the laser operation depend on the injection current (I) at an
external cavity length Lext=3.75mm and the feedback parameter f, =0.071 . Data
marked asterisks are the simulation data. (a) Oscillation frequency versus the injection
current (I). (b) Average output power versus the injection current (I). (¢) Oscillation
Amplitude the injection current.

injection current I leads the weaker oscillation. When 1>139.63mA, the stable oscillation
disappears.

Due to the simulated results in Fabry-Perot lasers and VCSEL, we can conclude that: the
SEC LD exhibits some regimes of high-frequency self-oscillations in some range of feedback
parameters. For fixed Lext and f,,, , the change of the injection current will cause the change of
the oscillation frequency, the oscillation amplitude and the average output power.
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4.0 Conclusion

We have presented analytical and numerical investigation of the instability regimes of a
SEC LD . The instability is caused by self twin-mode locking of a short external cavity (a few
millimeters) laser diode. As we have proved theoretically, these high-frequency oscillations
correspond to an equalization of the cavity loss for the main mode (the lasing frequency) and the
sidemode. The phenomena of high-frequency oscillation is caused by a high level of coupling
between the laser diode and the external cavity and thus are compound-laser-cavity effects.

The key results are as follows: First, a laser diode operation with a short external cavity (a
few millimeters) in some ranges of feedback parameters exist some regimes of high-frequency

self twin-mode oscillations. Second, in high frequency oscillation of every £, ¥ (N=0,1,2.....)
regime, increasing f, leads to higher modulation index and higher oscillation frequency. For
certain f,, the strongest oscillation amplitude shows up (the modulation depth reaches unity).
Increasing f,, destroys the twin-mode locking instability and lead to a higher power single-

mode state. These instability repeat for every f,,, ¥ regime.

In the simulation results, changing injection number (J) (or injection current (I)) will
change the average output power. In addition to changing the output power, it also changes the
critical feedback parameter f,, which required for high-frequency oscillations and the oscillation
frequency. But in equations (26) and (29), the critical feedback parameters and the beat
frequencies do not depend on either the injection number or the output power. The validity of
these questions should be investigated further.

In numerical simulation, we used two kinds of laser cavities, Fabry-Perot laser and
VCSEL. The numerical and analytical results demonstrate that a SEC LD operation do exhibit
high-frequency self twin-mode locking oscillations in some ranges of feedback parameters.
These should be proved by experiments.

This laser operation of a SEC LD can be used as tunable microwave oscillators with

frequency modulation capacities. These device can be very useful for all-optical high-speed
microwave fiber-optic transmitters.
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Appendix A

To find the relation between output power (P) and photon numbers (S), we should discuss
the two main sources of loss in optical resonators first. The two most common loss mechanisms
in an optical resonator are as follows:

1. Losses resulting from absorption and scattering in the laser medium between the mirrors. a,
is the absorption coefficient of the medium corresponds to photons which are lost within the
laser cavity.

2. Losses arising from nonperfect reflections at the mirrors. Reflection loss is unavoidable,
since without some transmission no power output is possible. Even we design the mirrors
with the highest possible reflectivities, some residual absorption and scattering reduce the
reflectivity to somewhat less than 100 percent.

The threshold gain denoted g=g, , equals to an effective overall distributed-loss
coefficient,

En = a; +Q,, (A-l)
where the quantity

a, = —1—-ln( !
2L RR,

) (A-2)

represents a fictitious equivalent loss per unit length due to useful escape of light through one of
the two cavity mirrors. The reflectances of the two mirrors are R1 and R2.

The external quantum efficiency of the LD, 7,,,, is the fraction of injected electrons that
get converted to useful output photons. The quantity #, is the internal quantum efficiency, the
fraction of injected electrons that produce stimulated photons, not all of which will reach the
output of the LD. The ratio between the external and the internal quantum efficiency is given as

1 1
(7)-In( )
_2L° RR @, A3)

77[ glh glh as + am

Therefore, total emitted power P, due to stimulated emission is

tol

P, =(hv)- Je .( # of photons due to stimulated emission per unit time) (A-4)

i

that 1s,
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P, =()-1= (R, -S) (A-5)

=(hv)-%¢-———-S (A-6)

where R, - S is the photons generated per unit time by stimulated emission and

1

Rsl ~ (A'7)
Toh
is above the threshold. The photon’s lifetime, 7, , is defined as
1 c
—=(=)(a,+a,) (A-8)
Ty © Mg

where n, is the effective group refractive index and hv is the energy of each photon.

From equations (A-3) and (A-8), the total emitted power will be

By = (hv)-—= L—C )-(ar, + a,,.J'S (A-9)
a,+a, | n,
Then,
Rot =(hv).am‘ ¢ S ’- (A'].O)
n

g

With the expression for o, given by equation (A-2), one finally gets

w (A-11)

» . 1s the total power emitted from both facets (or both mirrors). Equation (A-11) is the
relation between power (P) and photon numbers (S).

where P

For a symmetric laser diode, a total output power P, is equal to twice of the output

ot
power per facet (P / per facet=1/2 P, ).

30




Appendix B

Small signal analysis of the EC LD far above threshold can be performed by linearizing
(1) and (2) with respect to small derivations around the stationary solutions and neglecting the
noise terms. By inserting S = jw into equation (32) , we get

D(w)=iw’ - a)z[;/+ 2xk(1-¢e"")cos ¢]
—ia)[a)R2 + (1 ei“”)z]
+x] @, (1- € )(cos g— asin §)| (B-1)

with e(7) =1-¢"",¢=Qr . Then,

D(w) =i®’ — o*[y +2 k(1 - cos wr+isin wr]cos ¢
—ia)[coR2 + k(1 -2(cos ot +isin w7) + cos2m7+ isin2a)r)]
-Hc[a)R2 (1-cos wr—isin wr)(cos — asin ¢)] (B-2)

For having a zero of D(®) on the imaginary axis (the boundary of the stability), we set
the real part and imaginary part of D(w) equal to zero (Re[D(@)]=0 and Im[D(w)]=0) . The
real part of D(w) gives

Re[D(w)]= —@*[y + 2 Kk(1 - cos w7) cos ¢] - ia)[rcz (=2isin ot + isin2a)r)]
+xk@," (1 - cos wr)(cos g— asin ¢)
= -’[y+2x(1-coswr)cos g] - CO[K'2 (-2sin wr+2sin w7 cos cor)]
+xw, (1 cos wr)(cos g~ asin @)
= -0’y - 20" k(1 - cos ) cos ¢+ wi’ (-2 sin @7+ 2 sin @7 cos w1)
+x@, (1 cos wr)(cos g~ asin @)

For Re[ D(w)]}=0, we get

0= -0’y —20* k(1 — cos w7) cos ¢+ wx’ (—2sin @+ 2 sin W7 cos W)
+Kk@ ;" (1 - cos wr)(cos ¢— asin ¢) (B-3)

Dividing equation (B-3) by (xw,’) , we obtain

@* @’

0=- o -2. 2-K(l—cosa)r)cos¢—2-w—,§-sina)r
1) )
rc(—;—) g g (B-4)

+ (cos ¢— asin g)(1 — cos w7)
Then,
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2
1-2. —w—z)(l —cos wr)cos g— asin K1 — cos wr)
@

e , (B-5)
=2.-—sinwr(l - CcoswT) +
Wy K,
Dividing equation (B-5) by (I1-coswr) gives
o’ . ok . »* 1
(1-2-—5)cosg—asing=2-—-sinwr+ . . (B-6)
Wy Wy ko, 1-cosart

This is the boundary condition from the real part of D(w) .
The imaginary part of D() gives,

Im[D(w)]= io® — o [2ixsin wrcos §] - iofw,’ + k> (1 -2 cos @T+cos2w7)]
+x{~wp isin w1(cos g — asin @)] (B-7)

Setting Im[ D(@)]=0 gets
@ — 0*[2Kksin wrcos ¢] - w[w,” + 7 (1 =2 cos w7+ cos2w7)] |
~i{w,’ sin w7(cos ¢g— asin ¢)]=0 (B-8)
Then, ' '

@ - ow,! = 2Kw” sin @rcos g+ wx’ (1-2cos wT+cos2wr)

+ K@ p? sin @7(cos ¢ — asin @)

or
(&* — w,2) =2k’ sin wrcos g+ wr’ (1 -2 cos w7+ cos2 @)
+ K, sin w(cos ¢ — asin @)
ie.
(0 — w,?) = ok’ (1 -2 cos @7+ cos2w7)
B-9
+ ko sinwr { [1 - 2(—=)*Jcos ¢— asin ¢ } (B-9)
w, |
By inserting equation (B-6) into RHS of equation (B-9) , we obtain
(0 - w,;7) = wK* (1 -2 cos w7+ cos 2w7)
o’ 1 (B-10)

) WK
+ K@y sin@f2—; -sinwr+ -
Wy ko, 1-coswt
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Divided by @, we get

@' -y =1 (1-2coswr+cos2wr)

. K . 1
+ kw,’ sin 02— -sin w7+ -
Wy Ko, l1-coswr

. Then,

@’ — o, = K (1-2cos o+ cos2w7)
2 .
. - sin 7
+2x7 -sin’ wr— R_.

w, l-coswr

’ 2
With @, = Dk , the damping frequency of relaxation oscillation of LD without EC , we get

0 — oy = 1 (1-2coswr+cos2wr+2sin’ wr)

2 5in L . cos L7
0 0 sin—~-cos—~ _ (B-11)

- 2
(a)_R 2sin? 2
y 2
Then,

o’ —w,’ = K (2(1 —cos @) + cos2w7— (1 - 2sin® @1)) — wy - cot%T
Using cos2w7=1-2sin’ wr leads

o -0t =4k sinz%r—a)y-cot%r . (B-12)

Therefore, eqliations (B-6) and (B-12) show the stability boundary.
The state becomes unstable when a zero’of D(w) passes the imaginary axis. For the

stable solutions the zeros of D(@) should lie on the left side of the imaginary axis. Then we have
the stability solutions in equation (33) and (34) .
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Appendix C

/* C PROGRAM */

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#define KP 4.8 /* gain saturation coefficient */
#define R1  0.999 /* facet reflectivity */
#define R2  0.995 /* facet reflectivity */
#define L 1.0e-6 /* laser cavity length */

#define NG 3.5 /* refractive index */
#define C - 3.0e8 /* light velocity  */
#define alfs 3.6e3 /* scattering loss coefficient */

#define TSP 2.0e-9 /* spontaneous emission lifetime */
#define NS 1.41372¢9 /* carrier number to reach zero gain */
#define GN  2.2¢3 /* gain coefficient */

#define A 4.0 /* linewidth enhancement factor */

#define DL 0.0 /* simulation initial time */
#define DH  4e-8  /* simulation final time 10ns */
#define J 0.87¢18 /* injection number */
#define INTERVAL 1000 /* data printout interval */

#define STEPS 4000000 /* steps number in (0,10ns) */

void odelong();
void rk5();

void diff();

void FB();

void nrerror(};
void free_vector();
void derivs();
double *vector();

double FEXT,LEXT,TP,alpha,P;
int delay;

main()

{

long nvar, i;
double x1, x2, hl, *y;

alpha = alfs-log(R1*R2)/(2.0*L);

TP = NG/(C*alpha);
P= -0.5*(6.63e-34*C/966e-9)* (log(R1*R2)/(2.0+L))*(C/NG); /*wavelengh 966nm*/
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nvar=3;
x1=DL;
x2=DH,;
h1=(x2-x1)/STEPS;  /* step size */

y=vector(1, nvar);

y[1]=1000.0; /* y[1]11(0) */
y[2]=0.0; *yl21Q */
y[3]=NS; * y[31N(0) */

printf("Input the value of FEXT -=>");
scanf("%lIf",&FEXT);
printf("Input the value of LEXT -=>");
scanf("%If", & LEXT);

delay=2.0*LEXT/C/h1;

printf(" P=%e \n", P);

printf(" J=%e \n", J);

printf(" delay=%d \n", delay);

printf(" FEXT=%]1.4f\n",FEXT ); ‘
printf(" LEXT=%2.2f mm \n", LEXT*1e3),

odelong(y, nvar, x1, x2, hl, derivs, rk5);

void nrerror(error_text) /* error handle */
char error_text{];

{
void exit();
fprintf(stderr, " numerical run-time error ... \n");
fprintf(stderr, "%s \n", error_text);
fprintf(stderr, " ...exiting to system ... \n"); exit(1);

}

double *vector(nl, nh)
long nl, nh;
/* allocates a double vector with range [ 1 .. nvar] */
{
double *v;
v=(double *)malloc((unsigned) (nh-nl+1)*sizeof(double));
if (Iv)
nrerror("allocation failure in vector()");
return v-nl;
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void free_vector(v, nl, nh)

double *v;

long nl, nh;

/* frees a double vector allocated by vector() */

free((char*) (v+nb));
}

void derivs(x, y, v, dydx)
/* yi=§,y2=Q,y3=N
differential equation */

double x, y{], v[], dydx[;

{
double CL, TO, K, templ, ss, Q;

/* double CL, TO, K, templ, ss, Q, R1; */

CL=0.5*(1-R2)/sqrt(R2);

TO=2*L*NG/C,
=2*CL*sqrt(FEXT)/TO;

temp1=GN*(y[3]-NS);

ss=temp1*(1-KP*P*y[1])-1/TP;

Q= -atan(A)+y[2]-v[2];

dydx[1]=ss*y[1]+2*K*sqrt(y[1])*sqrt(v[1])*cos(Q);
| dydx[2]=0.5*A*temp 1-K*sqrt(v[1])*sin(Q)/sqrt(y[1]);
dydx[3]=J-y[3}/TSP-temp 1 *(1-KP*P*y[1]D)*y[1];

}

void odelong(ystart, nvar, x1, x2, h1, derivs, rk5)
double ystart[], x1, x2, hl;
long nvar; <
void(*derivs)(); /* ANSI: void(*derivs)(double,double *,double *); */
void(*rk5)();
/* runge-kutta integrate starting values ystart[1, nvar] from x! to x2,
h1 should be set as stepsize.
derivs routine for calculate the right-hand side derivative, while rk5
is the name of the stepper routine to be used */

{

long i, k, step;
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double x, h;
double *y, *v, *dydx, *yout, *el, *e2, *vector();
void nrerror(), free_vector();

y=vector(1, nvar);
v=vector(l, nvar-1);
dydx=vector(l, nvar);
yout=vector(1l,nvar);
h=hl;

el=vector(1, STEPS+1);  /* data storage for S(t) */
e2=vector(1, STEPS+1);  /* data storage for phase */

printf(" h=%5.'10e \n", h);
printf(" max-step=%d \n", STEPS);
printf(" step-delay=%d \n", delay);

for (i=1; i<=nvar; i++)
yli]=ystart[i];
x=x1;
v[1]=0.0;
v[2]=0.0;

for (step=1; step <= STEPS; step++) {

elfstep]=y[1];
e2[step]=y[2];
if(step <= delay )
{
v[1]=0.0;
v[21=0.0;
}
else
{
v[1]=el[step-delay];
v[2]=e2[step-delay];
H

(*derivs)(x, y, v, dydx);
k5(y, v, dydx, nvar, x, h, el, €2, step, yout, derivs, diff, FB);

x=xth;

for (i=1; i<=nvar; i++)
yl[i]=yout(i};

el[step]=y[1];
e2[step]=y[2];
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x=x1;

for (i=0; i<STEPS/INTERVAL,; i++) /* print out the datas */
{

k=INTERVAL*i+1;

/* printf(" x=%e \t", x); */

printf(" %e \t", x);

printf(" %5.3f\n", el[k]*P*1e3);

x=x+INTERVAL*h;

}

/* printf(" x=%e \t", x); */
printf(" %e \t", x);
printf(" %5.3f \n", e1{k}*P*1e3);
/* fprintf(fp," %ee \t", x); */
* fprintf(fp," %5.3f \n", el[k]*3.6e-5); */

free_vector(el, 1, STEPS+1);
free_vector(e2, 1, STEPS+1);
free vector(y, 1, nvar);
free_vector(v, 1, nvar-1);
free_vector(yout, 1, nvar);
free_vector(dydx,1,nvar);

void rk5(y, v, dydx, n, x, h, el, €2, step, yout, derivs, diff, FB)

double y{], v[], dydx[], x, h, yout[], el[], e2[]; ‘
void (*derivs));  /* ANSI: void (*derivs)(double,double *,double *); */
void (*diff)();

void (*FB)();

long n, step;

/* given values for n variables y[1,n] and their derivatives dydx[1,n] known
at X, use the fifth order Runge-Kutta method to advance the solution over
an interval h and return the incremented variables as yout{1,n]. which need
not be a distinct array from y. the user supplies the routine derivs(x,y,dydx)
which return derivatives dydx at x. */

{
long i;
double *v1,*F1, *F2, *F3, *F4, *F5, *F6, *dydxt, *ytemp, *vector();
double *S,*T,
void free_vector();

Fl=vector(l, n);
F2=vector(1, n);
F3=vector(1, n);
F4=vector(l, n);
F5=vector(1, n);
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Fé=vector(1, n);
ytemp=vector(l, n);
dydxt=vector(1, n);

S=vector(1,5);
T=vector(1,5);
vi=vector(1,1);

if (step>delay)

{
(*diff)(h,step,el,S);
(*diff)(h,step,e2,T);

}

for (i=1; i<=n; i++)
F1[i]=h*dydx[il; /* first step */
for(i=1; i<=n; i++)
ytemp[i]=y[i]+0.5*F1{i];

if (step>delay)

{
(*FB)(0.5*h,step,S,el,v1);
v[1}=vl[l];
(*FB)(0.5*h,step, T,e2,v1);
v[2]=vl[1];

(*derivs)(x+0.5*h, ytemp, v, dydxt); /* second step */

for(i=1; i<=n; i++)
F2[i]=h*dydxt[i];
for(i=1; i<=n; i++)
ytemp[i]=y[i]+0.25*F1[i]+0.25*F2[i];

if (step>delay)
{
(*FB)(0.5*h,step,S,e1,v1);
v{1}=vi[1];
. (*FB)(0.5*h,step,T,e2,v1);
v2]=vI[1];
}

(*derivs)(x+0.5*h, ytemp, v, dydxt);

for(i=1; i<=n; i++)

F3[i]=h*dydxt[i]; /* third step */
for(i=1; i<=n; i++)

ytemp[i]=y[i]-F2[i]+2.0*F3[i];
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if (step>delay)

{
v[1]=el[step-delay+1];
v[2]=e2[step-delay+1];
}

(*derivs)(x+h, ytemp, v, dydxt);
for (i=1; i<=n; i++)
F4[i}=h*dydxt[i]; /* fourth step */
for(i=1; i<=n; i++)
ytemp[il=y[i]+7.0*F1[i}/27.0+10.0*F2[i]/27.0+F4[i}/27.0;

if (step>delay)
{
(*FB)(2.0*h/3.0,step,S,el,v1),
v[1]=vi{1];
(*FB)(2.0*h/3.0,step, T,e2,v1);
v[2]=vi[1];
-}

(*derivs)(x+2.0*h/3.0, ytemp, v, dydxt);

for (i=1; i<=n; i++)
F5[i]=h*dydxt[i]; - /* fifth step */

for(i=1; i<=n; i++) :
ytempli]=y[i]+28.0*F1[i}/625.0-0.2*F2[i]+546.0*F3[i1/625.0+54.0*F4[i/625.0-378.0*F5[i}/625.0;

if (step>delay)
{ .

(*FB)(0.2*h,step,S,el,v1);

v[i}=vI[l];

(*FB)(0.2*h,step, T,e2,v1);

v[2]=v1[1];

}

(*derivs)(x+0.2*h, ytemp, v, dydxt);

for(i=1; i <=n; i++)

F6[i]=h*dydxt[i]; /* sixth step */
for (i=1; i<=n; i++)
yout[i]=y[i]+F1[i]/24.0+5.0*F4[i}/48.0+27.0*F5[i]/56.0+125.0*F6[i]/336.0;

free_vector(dydxt, 1, n);
free_vector(ytemp, 1, n);
free_vector(F6, 1, n);
free_vector(F5, 1, n);
free_vector(F4, 1, n);
free_vector(F3, 1, n);
free_vector(F2, 1, n);
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free_vector(F1, 1, n);

free_vector(S, 1, 5);
free_vector(T, 1, 5);
free_vector(vl,1,1);

void FB(h,step,S1,52,v1)
double h,S1[],S2[1,v1{];
long step;

/* Taylor-series expansions
Found the feedback value between t and t+h  */
{

vI[1]=82[step-delay]+S1[1]*h+S1[2]*h*h/2.0+S1[3]*h*h*h/6.0+S1 [4]*h*h*h*h/24.0+S1[5]*h*h*h*h*h/120.0;
}
void diff(h,step,$3,54)
double h,S3[],S4[];

long step;

/* numerical differentiation :
if step<=delay+3 : using Forward-Difference Expressions with Error of

Order h*h
if step>delay+3 : using Central-difference Expressions with Error of
Order h*h*h*h
*/
{
long i;

i=step-delay;

if(step>delay+3)
{

SA[1]=(-S3[i+2]+8*S3[i+1]-8*S3[i-1]+S3[i-2])/(12*h);
SA[2]=(-S3[i+2]+16*S3[i+1]-30*S3[i]+16*S3[i-1]-S3[i-2])/(12*h*h);

S4[3]=(-S3[i+31+8*S3[i+2]- 13*S3[i+1]+13*S3(i-1]-8*S3[i-2]+S3[i-3])
/(8*h*h*h);

S4[4]=(-S3[i+31+12*S3[i+2]-39*S3[i+1]+56*S3[i]-39*S3[i-1]+12*83[i-2]
-S3[i-3])/(6*h*h*h*h);
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else

{

SA[1]=(-S3[i+2)+4*S3[i+1]-3*S3[i])/(2*h) ;
S4[2]=(-83[i+3]+4*s3[i+2]-5*S3[i+1]+2*S3[i])/(h*h) ;
SA[3]=(-3*S3[i+4]+14*S3[i+3]-24*S3[i+2]+18*S3[i+1]-5*S3[i])/(2*h*h*h) ;

S4[4]=(-2*S3[i+5]+11*S3[i+4]-24*S3[i+3]+26*S3[i+2]-14*S3[i+1]+3*S3[i])
/(h*h*h*h) ;
}
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